
Security Testing beyond Functional Tests

David Basin
ETH Zurich

June, 2017 
 
 
 
 
 
 

Associated Publication: Mohammad Torabi Dashti, David Basin: Security
Testing Beyond Functional Tests. ESSoS 2016.

Testing is king
• Widely used and accepted QA measure

• Ca. 50% project time and costs

Testing methods well established 

Security Testing

2

But what is security testing?

Test selection criteria

ad hoc functional structural stochastic failure based

27

risk based vulnerability driven fuzzing

, also for security

What is Security Testing?

Which statements do you agree with?
• Security testing is more difficult than functional testing

• One cannot measure the adequacy of security tests

• Some aspects of security testing defy automation

3

Objectives of talk
• Provide an elementary theory of security testing

• Use it to explain current practice and highlight limitations

Some Inspiration 
Michael Jackson, The World and The Machine, ICSE 1995

Machines serve a purpose in the world
• Machine: software + hardware system

• Purpose: control an airplane, edit a document, …

Different terms describe aspects of machine and world
• Requirements: address phenomena of the world

• Specifications: address behavior of machine

• Programs (or systems): executable and comply to specification

4
Requirements are what ultimately matters!

PW PMPW ∩ PM
Shared

phenomena
Phenomena
of the world

Phenomena
of the machine

World and Machine — An Example

Avionics: reverse thrust engaged iff plane on runway 
 Req: can_rev ↔ on_runway

Sensors on landing wheels generate pulses when wheels rotate 
 World1: pulsing ↔ rotating 
 World2: rotating ↔ on_runway

Can derive specification 
 Spec: can_rev ↔ pulsing

5

PW PMPW ∩ PM
can_rev

rotating
on_runway

pulsing

Development Explains Requirement’s Satisfaction
 
 World1: pulsing ↔ rotating 
 World2: rotating ↔ on_runway  
 Spec: can_rev ↔ pulsing

 Req: can_rev ↔ on_runway

6

But after rainfall:  
 aquaplaning may occur, whereby World2 fails 
 ⇒ reverse thrusters fail to fire and plane slides off runway

PW PMPW ∩ PM
can_rev

rotating
on_runway

pulsing

I. Motivation and Context

II. Specifications and Requirements

III. Security Rationales and Security Cases

IV. Security Testing

Road Map

7

Requirements and Specifications

Starting point: valuable resources

Security requirements express constraints on resource usage.

• Should hold in presence of an adversary.

• Example: valid library card required to borrow books.

System (aka machine): artifact whose behaviors can be regulated
and controlled

Specification: describes desired system behaviors (over interface)

8

Thought experiment:

• Specify an IT System for authorizing book loans

• How might an unauthorized user take books from the library?

Example: R&D Lab

Sensitive documents in lab
• Access limited by an electronic lock system at door

Security requirement
• Only staff members working in lab may read document

• Does not prohibit/oblige any behavior for lock

Specification for lock: 𝞥(key,open) = open ⇔ (key ∈ validKeys)

Output signal open (which triggers cylinder’s actuator) is produced only
upon receiving an input key belonging to the set validKeys

If lock works correctly, is the security requirement satisfied?

9

• No: room may have windows
• Excluding this requires environmental assumptions  

Example: Parking Lot
Work out Specification, Requirements, and Missing Assumptions

10

Example: Publisher (and Interfaces)
Integrity requirements for publisher’s database
• Only copy editors may delete data

Violated by dynamite exploding in vicinity
• Input that deletes data

World has no definite interface for requirements
• DB System: interface realized through APIs

• World/Environment: Dynamite, axe, degausser, server’s format command, …

Specifications are over definite interfaces.
• E.g., only users of role copy editor may execute the API’s delete command

11

Nominal versus Side Channels

System’s nominal channels are anticipated and constrained by Spec

 
 
 
 
 
 
A side channel is an unanticipated communication channel  
between system and its adversarial environment. E.g.
• Reading secret data through timing or power analysis

• Writing data by row-hammer attacks

Side channel’s exploitability depends on adversary

12

I. Motivation and Context

II. Specifications and Requirements

III. Security Rationales and Security Cases

IV. Security Testing

Road Map

13

Environmental assumptions link system to behavior in the world
• In database scenario:

- Only copy editors have role copy editor

- No way to delete data except by executing API delete command

Relating World and Machine

14

Requirement RQ

Specification SP

Assumption EA

System S

Environment E Adversary A

Requirements for usage of resources in the WorldSystem (machine): symbol processing entity, governed by SP 
Behavior independent of deployment contextSecurity Rationale is argument for reduction

Security Rationale

Security rationale for <RQ, SP, E, EA> justifies condition: 

 For all System S and Adversary A: 
 S ⊨ SP ⋀ S || E || A ⊨ EA ⇒ S || E || A ⊨ RQ (†)

15

Comments on Rationale

 For all System S and Adversary A: 
 S ⊨ SP ⋀ S || E || A ⊨ EA ⇒ S || E || A ⊨ RQ (†)

1. SP regulates S behavior over nominal channels (1st conjunct) 
Adversary may abuse system over side channels (2nd conjunct)

2. S ⊨ SP is formal. Remaining two satisfactions are informal

- E and A have no clear boundaries

- So (†) is an informal guideline to clarify verification/refutation objectives

3. If EA is RQ, (†) is trivially satisfied

- Whether statement is requirement or assumption depends on context

- Example: no building entry through window is a requirement if we are

designing the building.

16

Comments on Rationale (cont.)

For all System S and Adversary A: 
 S ⊨ SP ⋀ S || E || A ⊨ EA ⇒ S || E || A ⊨ RQ (†)

4. Rationale can only account for small set of entities and interaction

- Cannot reason about entire world!

- Need assumption that excluded entities and interactions 

are unimportant for requirement’s satisfaction

Example: system S has no side channels to communicate 
with the adversary (Note also role of S in 2nd conjunct!)

5. Simplification: conflate E* = E || A in (†)  
 S ⊨ SP ⋀ S || E* ⊨ EA ⇒ S || E* ⊨ RQ

17

RQ = only staff members may enter lab

Reduce RQ to following requirement 
 SRQ: lock only opens after valid  
 key presented. 

Relies on 3 environmental assumptions:

EA1: Only staff members have valid key

EA2: Door opens only after receiving  
 lock’s signal

EA3: Only entry into lab is through door 

Logical reasoning justifies reduction

(EA1) hasValidKey(X) → isStaff(X)

R&D Lab Example 
Constructing a Security Rationale

18

(EA2) doorOpensFor(X) → signalFor(X)
(EA3) enterLab(X) → doorOpensFor(X)

(SRQ) signalFor(X) → hasValidKey(X)

(RQ) enterLab(X) → isStaff(X)

RQ

SRQ EA1 EA2 EA3

Rationale can be further elaborated

Reduce SRQ to specification on nominal channel 
 SP: output signal open produced only after receiving a key belonging  
 to set validKeys

Requires two more assumptions 
 1) EAI: open, key, and validKeys interpreted as expected and entity  
 cannot send key to lock system without possessing key 
 

 2) EAS: all communication between system S and A are regulated by SP 
 (excludes, e.g., hidden backdoor in S, or power cutoff opens door)

This constitutes a security rationale for <RQ, SP, E, EA> where: 
 — E is lab’s environment 
 — RQ and SP are defined above 
 — EA is conjunction of E1, E2, E3, EAI, EAI

R&D Lab Example (cont.) 
Constructing a Security Rationale

19

SRQ

SP EAI EAS

Visualization as Reduction Tree

Leaves are specifications and remaining assumptions

20

EASEAISP

RQ

EA1 EA3SRQ EA2

Root is security requirement

Security Cases

When we deploy system S in  
environment E, with adversary A reduction yields: 
 S ⊨ SP ⋀ S || E || A ⊨ EA

Security case is argument for truth of these conjuncts
• Justifies leaves of reduction tree

Analogous to safety cases, provided by designers
• Verification may be used to establish S ⊨ SP 

+ analysis how system used in adversarial environment, S || E || A ⊨ EA

Role of adversary
• Irrelevant for security rationale & system analysis S ⊨ SP
• Highly relevant for S || E || A ⊨ EA

21

Rationale holds by logical argument, independent of adversary 
 
 
 
 

But, assumptions express constraints on adversary’s capabilities

Example: EA1 is violated if adversary can threaten or bribe a staff
member and thereby obtain a valid key
• Security case must argue why an anticipated adversary  

cannot violate this assumption

• E.g., threat agent = a curious visitor

(EA1) hasValidKey(X) → isStaff(X)
(EA2) doorOpensFor(X) → signalFor(X)
(EA3) enterLab(X) → doorOpensFor(X)

(SRQ) signalFor(X) → hasValidKey(X)

(RQ) enterLab(X) → isStaff(X)

Example 
Security Rational for Lab

22

Security Cases and Closed-World Assumption

23

EAS: all communication between system S and A are regulated by SP
(excludes, e.g., hidden backdoor in S, or power cutoff opens door)

Closed-world assumption: excludes various adversarial actions
• That which has not been considered in SP plays no role

• Completes security case in “formal sense”

Example: lock system has no side channels.
• Suppose lock leaves door open if power cut off

• Assumption fails for an adversary who can disrupt power

• Might be valid for weaker adversary.

Since all possible channels cannot be enumerated,  
closed-world assumption must invariably be invoked.

I. Motivation and Context

II. Specifications and Requirements

III. Security Rationales and Security Cases

IV. Security Testing

Road map

24

Functional tests (S-Tests): aim at refuting that system S meets its
(functional, security, …) specifications SP
• Specification not just the “functional” ones, derived from use cases 

(Call these: “restricted functional tests”)

• Examples: bound on delay in producing output, or threshold in

electromagnetic radiation levels

Environment assumption tests (E-Tests) 
Aim at refuting environmental assumptions EA, for some system S
environment E and adversary A

Security Testing: both types of tests

Kinds of Testing

25

Test WRT
specification

Test WRT
environmental

assumption

S-Tests E-Tests

Restricted Functional Tests

S ⊨ SP S || E || A ⊨ EA

Security Tests and Falsification

Recall security rationale (for given S and A) 
 S ⊨ SP ⋀ S || E || A ⊨ EA ⇒ S || E || A ⊨ RQ (†)

Refuting either conjunct does not refute conclusion
• But it does indicate something wrong with system or design!

Refutation of a conjunct suggests RQ violated as it is unlikely
satisfied due to unintended causes

Call converse of (†) the Intentional Security Hypothesis (H)
• Says system satisfies requirement by design, not by chance!

• (H) will be implicitly used on all remaining slides

26

S-Test Examples

S-tests (restricted functional tests) 
 
 
 
 
 
 
 
S-Tests (general)
• Electromagnetic radiation levels do not exceed some threshold

• S-Test over anticipated (nominal) channel

Most security tests are S-Tests, e.g., buffer overflow,
• Feed the lock system a very large key

• Might produce open signal without inputting a key in validKey

27

Security Testing: S-Tests

Specifications constrain a system’s behaviors over its interface.

System (Security) SPEC

Gate Controller Alarm goes o↵ if the bar is forced open

ATM After three consecutive wrong PINs, card is blocked inside

Phone All communications are encrypted using AES-1024

Web Server Only users with the role auditor can read the log file

S-tests’ goal is to refute the hypothesis: System ` SPEC

S-Tests are independent of the adversary model

To refute System ` SPEC, we can use, e.g., fault-based testing

Software testing literature and tools readily apply here.

56 / 1

Restricted Functional Tests

S-Tests E-Tests

Fig. 3. S-tests, whose purpose is to refute the hypothesis that a system satisfies its specification,
include restricted functional tests, which apply to the functionalities the system must offer. E-
tests, in contrast, attempt to violate an environmental assumption in an adversarial environment.

A test of this type, called an S-test, is intended to refute S |= SP , which is an in-
stance of functional testing. Tools and techniques for generating and automating func-
tional tests can therefore be used here; see for example [2, 4]. Note that S-tests pertain
to symbol manipulating entities and are therefore independent of the adversary. More-
over, restricted functional tests are instances of S-tests. For example, suppose a radio
transmission system must satisfy the specification that transmitted messages should be
encrypted with 1024-bit keys. Restricted functional tests can be applied to this system
because the specification describes a use case of the system.

E-Tests: Test the validity of the environmental assumptions.

A test of this type, called an E-test, is intended to refute the hypothesis SkEkA |=
EA. Refuting this hypothesis is what distinguishes security testing from functional test-
ing. Namely, functional tests pertain to a system’s behaviors over its interface, described
by a specification. In contrast, security E-tests apply not only to systems but also to a
nebulous environment and an adversary with no interface (see §2). Therefore, testing
the validity of environmental assumptions cannot be reduced to providing an input and
observing an output over a definite interface. These tests are therefore not an instance of
functional tests: they pertain to actual entities in the world. In particular, they depend on
the adversary’s capabilities. The diagram of Figure 3 illustrates the relationship between
these two types of tests.

Example 8. Consider the scenario of Example 5, with the reduction tree depicted in
Figure 2 for the requirement RQ . The purpose of security testing is to refute the hy-
pothesis that RQ is satisfied in the presence of a given adversary A. As previously
explained, refuting the validity of the reduction tree’s leaves (which is the goal of E-
tests and S-tests) does not entail that RQ is violated, because RQ can be satisfied due
to unanticipated reasons. It is only by H that design errors imply RQ’s violation. We
consider the task of violating some of Figure 2’s leaves in the following.

To violate the leaf SP , the tester tries to refute the hypothesis that the lock system
satisfies the specification SP . The tester may, for instance, input very large keys into the
lock system, where a key is a sequence of bits. If a buffer overflow is discovered, then
the adversary might be able to take control of the lock and produce an open signal
without possessing a valid key. Note that to violate SP the tester need not elicit the
adversary’s capabilities. The lock system must satisfy SP on its nominal channel for all
possible inputs and outputs. This is an S-test. In contrast, the tests below are E-tests.

11

EA2: try to intercept communication between lock and door and
inject an open signal

EA3: try climbing through window

EAI: test if lock’s variables are misinterpreted
• E.g., validKeys contains invalid key of a former staff member

• Alternatively a replay attack would allow a  

non-staff member to present a key in validKeys

Feasibility depends on environment and adversary
• Can adversary climb in through window, squeeze between window bars,

unhinge the door, remove the lab’s roof with a large can-opener?

• Checklists and brainstorming help. But are never complete!

EA2: Door opens only after receiving lock’s signal
EA3: Only way to enter lab is through door
EAI: open, key, and validKeys interpreted as expected

E-Tests Examples

28

Inherent Incompleteness of E-Tests

Fundamental distinction with S-Tests: domain has no boundaries
• Not merely the problem of infinite cardinality

Essentially unlimited experience and  
creativity required of tester

Example: Four-Square Laundry 

29

A British secret operation, the “Four Square Laundry Affair” was carried
out in Northern Ireland to collect information about the residents of a
troubled neighborhood. A rogue laundry service van visited the
neighborhood regularly, and sent the collect laundry for various tests and
inspections before washing it. The tests included checking for traces of
explosive material or blood. The service also noted changes in the
amount or kinds of clothing sent by each household for washing, which
could indicate the presence of guests, and so forth.

Incompleteness/Challenges (cont.) 
Another example: sensitive data on the web

Examples of events that can violate CWA:
- Remotely degaussing the storage device

- Reformatting system storage

- Exploiting BoF in FTP server running on Web App platform

- Bribing system administrators

30

E-Tests for CWA: Pharmaceutical Directory Example
Consider a national directory of pharmaceutical products:

SQL DB Web App

Network Interface

Directory System

Protected resource: data on the SQL database

Requirement: (integrity) only authorized modifications to the data

SPEC for web application: e.g. sanitize inputs against SQL injection

CWA: data cannot be modified except through the web application

Example events that can violate this CWA:

� remotely degaussing the storage device

� formatting the system’s storage

� exploiting a BoF in, say, ftp service

� bribing system administrators

88 / 1

Integrity requirement: only
authorized modifications of data

Protected resource:
data in database

Web App specification:
e.g., sanitize inputs

Closed-world assumption (CWA): data
can only be modified over web app

So Security Testing is Harder!

System specification describes behavior over interfaces
• Basis for constructing S-Tests, independent of adversary and environment

• Example: PDP should function consistently independent of environment

Security testing hinges on assumptions validity in adversarial env.
• Environments and adversaries are nebulous entities with no clear interface

• No domain boundaries to limit search for test cases

• E-Tests only as thorough as attack scenarios that tester anticipates

31

System fails to meet SP, revealed through S-Tests.
- Debug and fix the system!

EA violated, revealed through E-Tests
- Fixing the system is not enough. Fix design and update security rationale

Vulnerability Remediation also Differs
What do we do when security case fails?

32

Update SP Change Environment

Account for revoked keys 
 ⟹ change system

Add window bars 
 ⟹ May need to update SP

 S ⊨ SP ⋀ S || E || A ⊨ EA

Security Testing in Practice

Security case typically not available
• Tester must reconstruct it: adversary capabilities, specs, assumptions

• Or tester is reduced to “playing around” with the system (typical case)

 Even when security case is available…
• Tester must anticipate how adversary can violate assumptions

• Relies on experience and creativity

⇒ Manual task outside of formal methods or informal guidelines

• Not surprising that existing methods fall short!

33

Almost all Tests are S-Tests

Risk-based security testing
• Work out specification from (mis)use-cases, risk analysis, documents

• Convert risks into security requirements demanding risk’s mitigation

• Countermeasure is system spec. defining mechanism to meet the req.

• Test the mechanism. This is an S-Test.

Fuzz testing and fault injection
• Refute generic system specifications, e.g., concerning memory access

• Generate tests guided by relevant fault model,

- e.g., failure to check input’s length or format

• Resulting tests focus on system’s nominal channel. They are S-Tests

Vulnerability-based testing
• Try to identify common vulnerabilities in system. Again S-tests

34

T 0.10 Failure or Disruption of Mains Supply
In a building, many networks are used for basic services that support an
institution's business processes, including IT. Examples include:
 – power, 

– telephone,  
– cooling,  
– heating or ventilation,  
– water and sewage,  
– supply of fire fighting water,  
– gas,  
– alarm and control systems (e. g. for burglary, fire, etc.)

A disruption of a supply network can lead to a situation where employees cannot
work in the building and hence information processing is impaired.

Methodologies with E-Test Flavor
BSI Baseline Protection

35

Provides a starting point for developing E-Tests

Methodologies with E-Test Flavor
Common Criteria

36

Ingredients are there, but
reduction-based reasoning
methodology is missing

Distinction between specification and requirements fundamental
• Ingredients for theory of security testing: security rationales, security cases,

requirement decomposition, intentional security hypothesis, S-tests, E-Tests

Theory answers questions initially posed:
1. Security testing is more difficult.

2. Adequacy cannot be measured. 

Environment without boundaries; domain of E-Tests undefined.

3. Testing cannot be automated. 

Code analysis and other formal methods are useless.

Starting point for documenting, classifying, and reusing experience
• Explicating violated assumptions

• Associating common assumptions with attacks

• Classifying threats on different systems/environment with countermeasures

Summary

37

Final Thoughts for Practitioners

38

Go beyond the well-chartered world of functional tests.
Lift your sights beyond machine and target world as well!

